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Abstract. A cornerstone of scientific progress is the ability to reproduce
experimental results. However, in the context of network benchmarking,
system complexity impedes a researcher’s attempts to record all of the
information needed to exactly reconstruct a network-benchmarking ex-
periment. Without this information, results may be misinterpreted and
are unlikely to be reproducible.

This paper presents a tool called coNCePTuaL which simplifies
most aspects of recording and presenting network performance data.
coNCePTuaL includes two core components: (1) a compiler for a high-
level, domain-specific programming language that makes it possible to
specify arbitrary communication patterns tersely but precisely and (2) a
complementary run-time library that obviates the need for writing (and
debugging!) all of the mundane but necessary routines needed for bench-
marking, such as those that calibrate timers, compute statistics, or out-
put log files. The result is that coNCePTuaL makes it easy to present
network-performance data in a form that promotes reproducibility.

1 Introduction

Network and messaging-layer performance measurements are used for a vari-
ety of purposes, such as explaining or predicting system and application per-
formance, procuring large-scale systems, and monitoring improvements made
during system deployment or messaging-layer development. Unfortunately, fol-
lowing a truly scientific approach to measuring network performance is not easy.
In the absence of clear but precise experimental descriptions, the consumers
of network performance data may draw incorrect conclusions, leading to dire
consequences.

Consider a standard ping-pong latency test, which reports the time needed
to send a message of a given size from one node to another by calculating half
of the measured round-trip time. Fig. 1(a) shows the result of running a latency
test atop two messaging layers and networks: p4 [1] (based on TCP) over Gigabit
Ethernet [2, Sect. 3] and Tports over Quadrics Elan 3 [3]. The latency test is
implemented using MPI [4] and both the p4 and Tports layers are integrated as
MPICH channel devices [5]. The latency program was compiled with GCC 2.96
using the -O3 and -g flags. All experiments were performed across the same –
otherwise idle – pair of nodes, each containing two 1GHz Itanium 2 processors
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Fig. 1. Two variations of a latency test

(one unused). Each data point represents the arithmetic mean of 11 executions
of the latency test. As Fig. 1(a) shows, the p4/GigE version of the latency test
exhibits lower latency than the Tports/Elan 3 version on all message sizes from
0 bytes to 2 kilobytes. Furthermore, the p4/GigE latency increases smoothly
while the Tports/Elan 3 latency varies erratically.

Figure 1(b) also shows the result of running an MPI-based latency test. This
test was run atop the same two messaging layers and networks as the previous
test. The same compiler was used and the experiments were performed across
the same nodes of the same cluster. As before, each data point represents the
arithmetic mean of 11 sequential executions of the latency test and, as before,
nothing else was running on the system. However, Fig. 1(b) delivers the opposite
message from that delivered by Fig. 1(a): Fig. 1(b) shows that Tports/Elan 3
is significantly faster than p4/GigE. Also, the Tports/Elan 3 curve shown in
Fig. 1(b) is smooth, unlike the erratic curve presented in Fig. 1(a).

Naturally, something is different between the experiment/experimental setup
used in Fig. 1(a) from that used in Fig. 1(b) – but what? Although we defer the
answer to Sect. 2 the point is that even with all of the experimental setup de-
scribed above, the performance results are untrustworthy; some critical piece of
information is missing. This simple exercise demonstrates the problem with the
status quo of network benchmarking: performance data that lacks a complete
and precise specification is subject to misinterpretation. This paper proposes a
solution in the form of a programming environment called coNCePTuaL which
was designed specifically to simplify the implementation of reproducible network-
performance tests. The rest of this paper is structured as follows. Sect. 2 moti-
vates and describes coNCePTuaL and showcases some sample output. Sect. 3
places coNCePTuaL in context, discussing the types of tasks for which coN-
CePTuaL is best suited. Finally, Sect. 4 draws some conclusions about the
implications of using coNCePTuaL for network performance testing.



2 coNCePTuaL

Fig. 1 on the facing page shows how subtle differences in experimental setup
can lead to radically different performance results. coNCePTuaL (= “Network
Correctness and Performance Testing Language”) is a programming environment
designed to help eliminate the ambiguities that can limit the usefulness of perfor-
mance results. It centers around a high-level, domain-specific language created
for the express purpose of writing network benchmarks. The design decision
to introduce a new language instead of merely creating a performance library
stemmed from the desire to make coNCePTuaL programs more readable than
a jumble of function calls and control structures. Although a library can cer-
tainly encapsulate all of the functionality needed for the scientific acquisition
and reporting of data and a textual or pseudocode description of a benchmark
can convey the basic idea, coNCePTuaL combines the best features of both
approaches:

1. Like pseudocode or prose but unlike the combination of a general-purpose
programming language and a library, coNCePTuaL programs are English-
like and can largely be read and understood even by someone unfamiliar
with the language.

2. Like the combination of a general-purpose programming language and a
library but unlike pseudocode or prose, coNCePTuaL programs precisely
describe all aspects of a benchmark, most importantly the implementation
subtleties that may be omitted from a description yet have a strong impact
on performance (as demonstrated by the previous section’s description of
Fig. 1).

The coNCePTuaL compiler, written in Python with the SPARK compiler
framework [6], sports a modular design that enables generated code to target
any number of lower-level languages and messaging layers.1 Hence, the same
high-level coNCePTuaL program can be used, for example, to compare the
performance of multiple messaging layers, even semantically disparate ones such
as MPI and OpenMP. The generated code links with a run-time library that
takes care of most of the mundane aspects of proper benchmarking, such as cal-
culating statistics, calibrating timers, parsing command-line options, and logging
a wealth of information about the experimental setup to a file.

The coNCePTuaL language provides too much functionality to describe in
a short paper such as this; the reader is referred to the coNCePTuaL user’s
manual [7] (available online) for coverage of the language’s syntax and seman-
tics. In lieu of a thorough description of the language, we now present a few
trivial code samples with some accompanying explanation to convey a basic feel-
ing for coNCePTuaL. Listing 1 presents the complete coNCePTuaL source
code which produced the data for Fig. 1(a) and Listing 2 presents the complete
coNCePTuaL source code that produced the data for Fig. 1(b). One thing
1 Currently, the only backends implemented are C+ MPI and C+ Unix-domain data-

gram sockets; more backends are under development.
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Listing 1. Source code that produced Fig. 1(a)
1 msgs ize i s "Message s i z e ( bytes ) " and comes from "--bytes" or "-b"
2 with default 0 .
3

4 All tasks synchronize then
5 task 0 resets i t s counters then
6 task 0 sends a msgs ize byte message to task 1 then
7 task 1 sends a msgs ize byte message to task 0 then
8 task 0 logs e lapsed_usecs /2 as " 1/2 RTT" .

Listing 2. Source code that produced Fig. 1(b)
1 msgs ize i s "Message s i z e ( bytes ) " and comes from "--bytes" or "-b"
2 with default 0 .
3

4 All tasks synchronize then
5 for 100 repetitions {
6 task 0 resets i t s counters then
7 task 0 sends a msgs ize byte message to task 1 then
8 task 1 sends a msgs ize byte message to task 0 then
9 task 0 logs the median of e lapsed_usecs /2 as " 1/2 RTT"

10 }

to note is that the language is very English-like; coNCePTuaL programs are
intended to read much like a human would describe a benchmark to another hu-
man. Although one can probably grasp the gist of Listings 1–2 without further
explanation, the following details may be slightly unintuitive:

– The first statement in Listings 1 and 2 parses the command line, assigning
the argument of --bytes (or simply -b) to a variable called msgsize.

– To simplify the common case, sends is synchronous and implies a matching
synchronous receives. Either or both operations can be asynchronous. coN-
CePTuaL also supports data verification and arbitrary buffer alignment.

– The coNCePTuaL run-time library automatically maintains the
elapsed_usecs (“elapsed time in microseconds”) counter and many other coun-
ters, as well.

If not yet obvious, the explanation of the performance discrepancy shown in
Fig. 1 is that the code shown in Listing 1 measures only a single ping-pong while
the code shown in Listing 2 reports the median of 100 ping-pong iterations.
Unlike p4, which uses TCP and therefore goes through the operating system
for every message, Tports is a user-level messaging layer that communicates
directly with the Elan. However, the Elan, which can transfer data from arbitrary
addresses in an application’s virtual-memory space, must pin (i.e., prevent the
paging of) message buffers before beginning a DMA operation. Because pinning
requires both operating-system intervention and a sequence of costly I/O-bus



crossings, a large startup overhead is incurred the first time a message buffer
is utilized. The code shown in Listing 1 does not amortize that overhead while
the code shown in Listing 2 does. Neither latency test is unreasonable; although
codes like Listing 2 are more common in the literature, codes like Listing 1 are
used when they more accurately represent an application’s usage pattern. For
example, two of the three execution modes of Worley’s COMMTEST benchmark,
which is used to help tune climate and shallow-water modeling applications [8],
specify that each message be sent only once.

Although Listings 1–2 state simply “task 0 logs 〈something〉”, the coNCeP-
TuaL run-time library takes this as a cue to write a set of highly detailed log
files, one per task. Each log file contains information about the execution environ-
ment, a list of all environment variables and their values, the complete program
source code, the program-specific measurement data, and a trailer describing the
resources used during the program’s execution.

A sample log file is shown below. This particular file – selected arbitrarily
from those used in the preparation of this paper – corresponds to one of the
values averaged to make the upper-right data point of Fig. 1(a), although the
file represents a later run than was used in the figure.

1 ###########################################################################
2 # ===================
3 # coNCePTuaL log file
4 # ===================
5 # coNCePTuaL version: 0.5.1
6 # coNCePTuaL backend: c_mpi (C + MPI)
7 # Executable name: /home/pakin/src/coNCePTuaL/latency1-elan
8 # Working directory: /home/pakin/src/coNCePTuaL
9 # Command line: ./latency1-elan --bytes=2048 --logfile=latency1-elan-2048-run4-%d.log

10 # Number of tasks: 2
11 # Processor (0-1): 0
12 # Host name: a11
13 # Operating system: Linux 2.4.21-3.5qsnet #2 SMP Thu Aug 7 10:51:04 MDT 2003
14 # CPU vendor: GenuineIntel
15 # CPU architecture: ia64
16 # CPU model: 1
17 # CPU count: 2
18 # CPU frequency: 1300000000 Hz (1.3 GHz)
19 # Cycle-counter frequency: 1300000000 Hz (1.3 GHz)
20 # OS page size: 16384 bytes
21 # Physical memory: 2047901696 bytes (1.9 GB)
22 # Library compiler+linker: /usr/bin/gcc
23 # Library compiler options: -Wall -W -g -O3
24 # Library linker options: -lpapi -lm -lpopt
25 # Library compiler mode: LP64
26 # Dynamic libraries used: /usr/local/lib/libpapi.so /lib/libm-2.2.4.so /usr/lib/libpopt.so.0.0.0 /usr/
27 # Average microsecond timer overhead [inline assembly code]: <1 microsecond
28 # Microsecond timer increment: 1.00887 +/- 0.256529 microseconds (ideal: 1 +/- 0)
29 # Process CPU-time increment [getrusage()]: 976.57 +/- 0.49757 microseconds (ideal: 1 +/- 0)
30 # WARNING: Process timer exhibits poor granularity (not a serious problem).
31 # Log file template: latency1-elan-2048-run4-%d.log
32 # Message size (bytes): 2048
33 # Number of minutes after which to kill the job (-1=never): -1
34 # List of signals that should not be trapped: 14
35 # Compilation command line: /usr/lib/mpi/mpi_gnu/bin/mpicc -I/tmp/ncptl/include -I/usr/local/include
36 # Log creator: Scott Pakin
37 # Log creation time: Thu May 27 18:45:43 2004
38 #
39 # Environment variables
40 # ---------------------
41 # HOME: /home/pakin
42 # PATH: /home/pakin/bin:/usr/local/bin:/usr/bin:/usr/sbin:/bin:/sbin:.
43 # PWD: /home/pakin/src/coNCePTuaL
44 # RMS_JOBID: 16588
45 # RMS_MACHINE: a
46 # RMS_NNODES: 2
47 # RMS_NODEID: 0
48 # RMS_NPROCS: 2
49 # RMS_PROCID: 0
50 # RMS_RANK: 0
51 # RMS_RESOURCEID: parallel.17079
52 # RMS_STOPONELANINIT: 0
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53 # SHELL: /bin/tcsh
54 # USER: pakin
55 #
56 # coNCePTuaL source code
57 # ----------------------
58 # msgsize is "Message size (bytes)" and comes from "--bytes" or "-b"
59 # with default 0.
60 #
61 # All tasks synchronize then
62 # task 0 resets its counters then
63 # task 0 sends a msgsize byte message to task 1 then
64 # task 1 sends a msgsize byte message to task 0 then
65 # task 0 logs elapsed_usecs/2 as "1/2 RTT".
66 #
67 ###########################################################################
68 "1/2 RTT"
69 "(all data)"
70 207
71 ###########################################################################
72 # Program exited normally.
73 # Log completion time: Thu May 27 18:45:43 2004
74 # Elapsed time: 0 seconds
75 # Process CPU usage (user+system): 0 seconds
76 # Task IDs assigned to processor 0: 0
77 # Processors assigned to task ID 0: 0
78 ###########################################################################

The key point is that a coNCePTuaL log file contains not just performance
measurements but also a detailed description of how they were produced, which
helps third parties understand the performance results. Such complete log files
are also of use to the people who generated them: How often does a researcher
struggle to use old data in a new paper or presentation, not remembering if
results.dat was produced with the environment variable MPI_BUFFER_MAX set
to 2048 or 1048576; whether the experiment was run with the older 2.8GHz
processors or the newer 3.2 GHz processors; or, even if the test transmitted mes-
sages synchronously or asynchronously? Furthermore, aspects of the execution
environment that cannot be determined automatically (e.g., characteristics of
the network fabric) can be inserted manually into a log file with a command-
line option to the benchmark program. In short, with coNCePTuaL, log files
present a complete picture of an experiment, making them far more valuable
than measurement data alone.

3 Discussion

The programs presented in Sect. 2 are simple to express in coNCePTuaL but –
apart from the creation of such content-rich log files – would be almost as sim-
ple to express in any other language. In general, coNCePTuaL’s usefulness
increases with the complexity of the communication pattern being tested. For
example, the 4 × 4 synchronous-pipe pattern described in a MITRE report [9]
requires 248 lines of LSE, a terse but low-level language for describing communi-
cation benchmarks. Because coNCePTuaL is a high-level language, the same
code (in fact, a more general M ×N synchronous pipe) can be expressed in only
26 lines of coNCePTuaL – far less than the LSE version and not significantly
more than what would be needed for a textual description of the communication
pattern. It is not merely short code lengths that make coNCePTuaL useful;
the increased comprehensibility of a coNCePTuaL program over the equiva-
lent program written in a lower-level language and the increased precision of a
coNCePTuaL program over a prose description make coNCePTuaL a useful



tool for any sort of network performance testing. The language even supports a
hybrid coding style in which lower-level language code can be inlined and exe-
cuted from a coNCePTuaL program, thereby ensuring that no functionality is
lost by programming in coNCePTuaL instead of a lower-level language.

coNCePTuaL is not intended to be a replacement for existing
communication-benchmark suites such as the Pallas MPI Benchmarks [10] or
SKaMPI [11]. Rather, its real strengths lie in its ability to rapidly produce cus-
tomized tests of network and messaging-layer performance:

– A coNCePTuaL mock-up of an application may make “what if” scenarios
more easy to evaluate than would rewriting the original application. For in-
stance, a user can evaluate how altering the communication pattern (caused,
for example, by a different data decomposition) should affect overall applica-
tion performance. A coNCePTuaL mock-up of Sweep3D [12] is currently
under development.

– System and application performance problems can be diagnosed by generat-
ing a simple but representative communication benchmark and successively
refining it to hone in on the source of the problem. (This methodology was
recently used to nearly double the performance of an application running on
ASCI Q [13].)

– Network-performance tests unique to a particular domain or otherwise unfa-
miliar to a target audience can be presented in a precise, easily understood
manner.

The coNCePTuaL source code will soon be available from http://
www.c3.lanl.gov/~pakin/software/. Making the software open-source enables
researchers to scrutinize the code so that coNCePTuaL can be used as a trust-
worthy replacement for C as a network-benchmarking language.

4 Conclusions

In the domain of network benchmarks, recorded performance data cannot blindly
be trusted. As demonstrated in Sect. 1, subtle variations in experimental setup –
even for a benchmark as trivial as a latency test – can lead to grossly varying
performance curves, even leading to different conclusions being drawn about
relative performance. The problem is that the complexity of current computer
systems makes it difficult (not to mention tedious) to store a sufficiently thorough
depiction of an experiment that was run and the experimental conditions under
which it ran. As a consequence, performance tests can rarely be reproduced or
validated in a scientific manner. Even unpublished performance data used locally
suffers from lack of reproducibility; a researcher may unearth old measurements
but have no record of what benchmark produced them or what parameters were
utilized in the process.

This paper proposes the coNCePTuaL programming environment as a so-
lution to the problem of irreproducible network performance results. coNCeP-
TuaL tries to codify the best practices in network and messaging-layer per-
formance testing into a high-level domain-specific language and accompanying
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run-time library. coNCePTuaL was designed specifically to support and fa-
cilitate all aspects of network and messaging-layer performance testing, from
expressing complex communication patterns tersely yet unambiguously through
storing in self-contained log files everything needed to reproduce an experiment.
Using coNCePTuaL, a researcher can easily present in a paper or report a
benchmark’s actual source code – not pseudocode, which may inadvertently omit
critical details. Although it will always be possible to misrepresent network per-
formance, coNCePTuaL makes it much easier to be meticulous.
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